Quantum interference phenomena in the Casimir effect
نویسندگان
چکیده
منابع مشابه
The Casimir Effect and the Quantum Vacuum
In discussions of the cosmological constant, the Casimir effect is often invoked as decisive evidence that the zero point energies of quantum fields are “real”. On the contrary, Casimir effects can be formulated and Casimir forces can be computed without reference to zero point energies. They are relativistic, quantum forces between charges and currents. The Casimir force (per unit area) betwee...
متن کاملThe quantum interference effect transistor.
We give a detailed discussion of the quantum interference effect transistor (QuIET), a proposed device which exploits the interference between electron paths through aromatic molecules to modulate the current flow. In the off state, perfect destructive interference stemming from the molecular symmetry blocks the current, while in the on state, the current is allowed to flow by locally introduci...
متن کاملThe Casimir Effect in Relativistic Quantum Field Theories∗
We review recent developments in the Casimir effect which arises in quantization volumes restricted by material boundaries and in spaces with non-Euclidean topology. The starting point of our discussion is the novel exact solution for the electromagnetic Casimir force in the configuration of a cylinder above a plate. The related work for the scalar Casimir effect in sphere-plate configuration i...
متن کاملQuantum Interference Phenomena Between Impurity States in d-wave Superconductors
We investigate the mutual influence of impurities in two-dimensional d-wave superconductors involving selfconsistent solutions of the Bogoliubov-de Gennes equations. The local order parameter suppression, the local density of states (LDOS) as well as the interference of impurity-induced structures are analyzed. We employ an impurity position averaging scheme for the DOS that does not neglect th...
متن کاملQuantum critical paraelectrics and the Casimir effect in time
We study the quantum paraelectric-ferroelectric transition near a quantum critical point, emphasizing the role of temperature as a “finite-size effect” in time. The influence of temperature near quantum criticality may thus be likened to a temporal Casimir effect. The resulting finite-size scaling approach yields 1 T2 behavior of the paraelectric susceptibility and the scaling form ,T = 1 2 F T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2015
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.91.062512